(cosecθ−cotθ)2= ____________.
(1−cosθ)(1+cosθ)
(1−tanθ)(1+cosθ)
(1−cosecθ)(1+cosθ)
(1−cosθ)(1+cotθ)
(cosecθ−cotθ)2=(1−cosθ)(1+cosθ) L.H.S.=(cosecθ−cotθ)2 =(cosec2θ+cot2θ−2cosecθcotθ) =(1sin2θ+cos2θsin2θ−2cosθsin2θ) =(1+cos2θ−2cosθ)(1−cos2θ) =(1−cosθ)2(1−cosθ)(1+cosθ) =(1−cosθ)(1+cosθ)=R.H.S.
(i) cosecθ+cotθcosecθ−cotθ=(cosecθ+cotθ)2=1+2cot2θ+2cosecθcotθ
(ii) secθ+tanθsecθ−tanθ=(secθ+tanθ)2=1+2tan2θ+2secθtanθ