(cosec θ+cot θ)×(1−cos θ)= _____
sin θ
(cosec θ+cot θ)×(1−cos θ)
We know that, cosec θ=1sin θ, cot θ=cos θsin θ
On plugging the values of cosecθ and cotθ and rationalising (1−cos θ), we get
(1sin θ+cos θsin θ)×(1−cos θ)×(1+cos θ)(1+cos θ)
=(1+cos θ)sin θ×(1−cos2θ)(1+cos θ)
=1−cos2θsinθ
∵sin2θ+cos2θ=1
⇒1−cos2θsinθ=sin2θsinθ
=sinθ