cosecθ(secθ−1)−cotθ(1−cosθ)=tanθ−sinθ
LHS=cosecθ(secθ−1)−cotθ(1−cosθ)
=1sinθ(1cosθ−1)−cosθsinθ(1−cosθ)[∵cosecθ=1sinθ,secθ=1cosθcotθ=cosθsinθ]
=(1−cosθ)sinθcosθ−cosθ(1−cosθ)sinθ=(1−cosθ)−cos2θ(1−cosθ)sinθcosθ
=(1−cosθ)(1−cos2θ)sinθcosθ=(1−cosθ)sin2θsinθcosθ(∵1−cos2θ=sin2θ)
=(1−cosθ)sinθcosθ
=sinθcosθ−sinθ=tanθ−sinθ(∵tanθ=sinθ−cosθ)
=RHS
Hence proved.