(cosecθ−sinθ)(secθ−cosθ)(tanθ+cotθ)=1
LHS=(cosecθ−sinθ)(secθ−cosθ)(tanθ+cotθ)
=(1sinθ−sinθ)(1cosθ−cosθ)
(sinθcosθ+cosθsinθ)
⎡⎣∵cosecθ=1sinθ,secθ=1cosθ,tanθ=sinθcosθ and cotθ=cosθsinθ⎤⎦
=(1−sin2θsinθ)(1−cos2θcosθ)
(sin2θ+cos2θcosθsinθ)
=cos2θ.sin2.1sin2θ.cos2θ
[∵1−sin2θ=cos2θ, and1−cos2θ=sin2θ]
=1=RHS
Hence proved.