Cosine of an angle between the vectors →a+→b and →a−→b if |→a|=2,|→b|=1 and →a ^ →b=60o is?
Letanglebetween(→a+→b)and(→a−→b)are(θ)|a|=2and|b|=1(given)⇒(→a+→b).(→a−→b)∣∣∣→a+→b∣∣∣.∣∣∣→a−→b∣∣∣=cosθ⇒→a.→a−→a.→b+→b.→a−→b.→b∣∣→a∣∣2−∣∣∣→b∣∣∣2=cosθ⇒∣∣→a∣∣2−→a.→b+→a.→b+∣∣∣→b∣∣∣2∣∣→a∣∣2−∣∣∣→b∣∣∣2=cosθ[∵→a.→b=→b.→a]⇒22−1222−12=cosθ1=cosθ∴Anglebetween(→a+→b)and(→a−→b)is0∘Ans.∴θ=0∘