cot-1(2×12)+cot-1(2×22)+cot-1(2×32)+... up to ∞ is equal to
π4
π3
π2
π5
Explanation for the correct option:
Given, cot−12(1)2+cot-12(2)2+cot−12(3)2+cot-12(4)2+...
∴Tn=cot−1(2n2)
=tan−112n2 =tan−1(2n+1)−(2n−1)1+(2n+1)(2n−1)
=tan−1(2n+1)−tan−1(2n−1) ; ∵tan-1(A-B1+AB)=tan-1A-tan-1B
∴T1=tan−13−tan−11
T2=tan−15−tan−13
T3=tan−17−tan−15
∴Sn=tan−1(2n+1)−tan−11
∴limn→∞Sn=tan−1∞−π4
=π2−π4
=π4
Hence, Option ‘A’ is Correct.
cot−1(2.12)+cot−1(2.22)+cot−1(2.32)+⋯+ up to ∞ is equal to
In Triangle ABC. If 2times angle A=3times angleB=6times angle c.
How to find angle A,B and C