cot−1(√1+sin x+√1−sin x√1+sin x−√1−sin x)=x2,xϵ(0,π4)
Given, cot−1(√1+sin x+√1−sin x√1+sin x−√1−sin x)=x2,xϵ(0,π4)
LHS=Cot−1(√1+sin x+√1−sin x√1+sin x−√1−sin x)=x2,xϵ(0,π4)
Now, we can write
√1+sin x=√sin2x2+cos2x2+2sinx2cosx2=√(sinx2+cosx2)2[∵ sin2x2+cos2x2=1 and sin x=2sinx2cosx2]⇒√1+sin x=sinx2+cosx2
similarly, we can get √1−sin x=cosx2−sinx2
On substituting above two values in Eq.(i), we get
LHS=cot−1(sinx2+cosx2+cosx2−sinx2sinx2+cosx2+sinx2−cosx2)=cot−1(2cosx22sinx2)=cot−1(cotx2)=x2=RHS
Alternative method
LHS=cot−1[√1+sin x+√1−sin x√1+sin x−√1−sin x]=cot−1[√1+sin x+√1−sin x√1+sin x−√1−sin x×√1+sin x+√1−sin x√1+sin x+√1−sin x]
(by rationalyzing denominator)
=cot−1[(√1+sin x+√1−sin x)2(√1+sin x)2−(√1−sin x)2]=cot−1[1+sin x+1−sin x+2√1−sin2x1+sin x−1+sin x]=cot−1[2+2cos x2sin x][∵cos2x+sin2x=1⇒cos x=√1−sin2x]=cot−1[1+cos xsin x]=cot−1[2cos2x22sinx2cosx2]Usingthestandardformulaeweget,=cot−1[cotx2]=x2=RHS
Note: If xϵ(0,π2), then √1−sin x=cosx2−sinx2 and if xε(π2,π), then √1−sin x=sinx2−cosx2