wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cot1(1+sin x+1sin x1+sin x1sin x)=x2,xϵ(0,π4)

Open in App
Solution

Given, cot1(1+sin x+1sin x1+sin x1sin x)=x2,xϵ(0,π4)

LHS=Cot1(1+sin x+1sin x1+sin x1sin x)=x2,xϵ(0,π4)


Now, we can write
1+sin x=sin2x2+cos2x2+2sinx2cosx2=(sinx2+cosx2)2[ sin2x2+cos2x2=1 and sin x=2sinx2cosx2]1+sin x=sinx2+cosx2

similarly, we can get 1sin x=cosx2sinx2
On substituting above two values in Eq.(i), we get
LHS=cot1(sinx2+cosx2+cosx2sinx2sinx2+cosx2+sinx2cosx2)=cot1(2cosx22sinx2)=cot1(cotx2)=x2=RHS

Alternative method
LHS=cot1[1+sin x+1sin x1+sin x1sin x]=cot1[1+sin x+1sin x1+sin x1sin x×1+sin x+1sin x1+sin x+1sin x]
(by rationalyzing denominator)
=cot1[(1+sin x+1sin x)2(1+sin x)2(1sin x)2]=cot1[1+sin x+1sin x+21sin2x1+sin x1+sin x]=cot1[2+2cos x2sin x][cos2x+sin2x=1cos x=1sin2x]=cot1[1+cos xsin x]=cot1[2cos2x22sinx2cosx2]Usingthestandardformulaeweget,=cot1[cotx2]=x2=RHS

Note: If xϵ(0,π2), then 1sin x=cosx2sinx2 and if xε(π2,π), then 1sin x=sinx2cosx2


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon