cot-1[(cosα)½]-tan-1[(cosα)½]=x, then sinx=
tan2α2
cot2α2
tanα
cotα2
Explanation for the correct option:
Given, cot-1cosα-tan-1cosα=x
⇒ tan-11cosα-tan-1cosα=x
⇒ tan-11cosα-cosα1+cosαcosα=x ; ∵tan-1A-tan-1B=tan-1(A-B1+A.B)
⇒ tanx=1-cosα2cosα
Here, P=1−cosα,B=2cosα
⇒ H=1-cosα2+4cosα ; ∵Hypotenuse=Perpendicular2+Base2
=1+cosα2
=1+cosα
∴sinx=PH
=1-cosα1+cosα
=2sin2α22cos2α2 ; ∵1-cosθ=2sin2θ2,1+cosθ=2cos2θ2
=tan2α2
Hence, Option ‘A’ is Correct.