1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Complementary Trigonometric Ratios
θtan 90∘-θ- 9...
Question
cot
θ
tan
90
°
-
θ
-
sec
90
°
-
θ
cosec
θ
+
sin
2
65
°
+
sin
2
25
°
+
3
tan
5
°
tan
45
°
tan
85
°
Open in App
Solution
cot
θ
tan
90
°
-
θ
-
sec
90
°
-
θ
cosec
θ
+
sin
2
65
°
+
sin
2
25
°
+
3
tan
5
°
tan
45
°
tan
85
°
=
cot
θ
cot
θ
-
sec
90
°
-
θ
cosec
θ
+
sin
2
65
°
+
sin
2
25
°
+
3
tan
5
°
tan
45
°
tan
85
°
∵
tan
90
°
-
θ
=
cot
θ
=
cot
2
θ
-
cosec
θ
cosec
θ
+
sin
2
65
°
+
sin
2
25
°
+
3
tan
5
°
tan
45
°
tan
85
°
∵
sec
90
°
-
θ
=
cosec
θ
=
cot
2
θ
-
cosec
2
θ
+
sin
90
°
-
25
°
2
+
sin
2
25
°
+
3
tan
5
°
tan
45
°
tan
85
°
=
cot
2
θ
-
cosec
2
θ
+
cos
2
25
°
+
sin
2
25
°
+
3
tan
5
°
tan
45
°
tan
85
°
∵
sin
90
°
-
θ
=
cos
θ
=
-
1
+
cos
2
25
°
+
sin
2
25
°
+
3
tan
5
°
tan
45
°
tan
85
°
using
the
identity
:
cosec
2
θ
-
cot
2
θ
=
1
=
-
1
+
1
+
3
tan
5
°
tan
45
°
tan
85
°
using
the
identity
:
cos
2
θ
+
sin
2
θ
=
1
=
0
+
3
tan
5
°
tan
45
°
tan
90
°
-
5
°
=
3
tan
5
°
tan
45
°
cot
5
°
∵
tan
90
°
-
θ
=
cot
θ
=
3
tan
5
°
tan
45
°
1
tan
5
°
∵
cot
θ
=
1
tan
θ
=
3
tan
45
°
=
3
∵
tan
45
°
=
1
Hence
,
cot
θ
tan
90
°
-
θ
-
sec
90
°
-
θ
cosec
θ
+
sin
2
65
°
+
sin
2
25
°
+
3
tan
5
°
tan
45
°
tan
85
°
=
3
.
Suggest Corrections
0
Similar questions
Q.
(sin
2
25° + sin
2
65°) +
3
(tan 5° tan 15° tan 30° tan 75° tan 85°)
Q.
Prove that:
(i)
sinθ
cos
(
90
°
-
θ
)
+
sin
(
90
°
-
θ
)
cosθ
=
1
(ii)
sinθ
cos
(
90
°
-
θ
)
+
cosθ
sin
(
90
°
-
θ
)
=
2
(iii)
sinθ
cos
(
90
°
-
θ
)
cosθ
sin
(
90
°
-
θ
)
+
cosθ
sin
(
90
°
-
θ
)
sinθ
cos
(
90
°
-
θ
)
=
1
(iv)
cos
(
90
°
-
θ
)
sec
(
90
°
-
θ
)
tanθ
cosec
(
90
°
-
θ
)
sin
(
90
°
-
θ
)
cot
(
90
°
-
θ
)
+
tan
(
90
°
-
θ
)
cotθ
=
2
(v)
cos
(
90
°
-
θ
)
1
+
sin
(
90
°
-
θ
)
+
1
+
sin
(
90
°
-
θ
)
cos
(
90
°
-
θ
)
=
2
cosecθ
(vi)
sec
90
°
-
θ
cosecθ
-
tan
90
°
-
θ
cotθ
+
cos
2
25
°
+
cos
2
65
°
3
tan
27
°
tan
63
°
=
2
3
CBSE
2010
(vii)
cotθ
tan
90
°
-
θ
-
sec
90
°
-
θ
cosecθ
+
3
tan
12
°
tan
60
°
tan
78
°
=
2
CBSE
2010
Q.
Prove that
sinθ
-
cosθ
+
1
sinθ
+
cosθ
-
1
=
1
(
secθ
-
tanθ
)
.
Or, evaluate:
secθ
cosec
(
90
°
-
θ
)
-
tan
θ
cot
(
90
°
-
θ
)
+
sin
2
65
°
+
sin
2
25
°
tan
10
°
tan
20
°
tan
60
°
tan
70
°
tan
80
°
Q.
The value of
sin
2
25
∘
+
sin
2
65
∘
is equal to
Q.
Evaluate :
2
√
3
t
a
n
5
∘
.
t
a
n
15
∘
t
a
n
60.
t
a
n
75
∘
.
t
a
n
85
∘
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Trigonometric Ratios of Complementary Angles
MATHEMATICS
Watch in App
Explore more
Complementary Trigonometric Ratios
Standard X Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app