Step 1 : Generate the formula for momentum.
Formula used: p = mv
Given:
Wavelength of the probe,
λ=1∘A=10−10m
Mass of an electron,
me=9.11×10−31kg
Planck's constant,
h=6.6×10−34Js
Charge on an electron,
e=1.6×10−19C
The kinetic energy of the electron is given as:
K=12mev2
It can be written as,
mev=√2Kme
Step 2: Generate the formula for de Broglie wavelength.
Formula used:λ=hp
Also, according to the de Broglie principle, the de Broglie wavelength is given as:
λ=hp.....(ii)
From (1) &(2) equation, λ=hmev
λ=h√2Kme
Step 3: Find the electron’s energy (K).
K=h22λ2me
By putting all the given values,
K=(6.626×10−34)22×(10−10)2×9.1×10−31
K=2.4×10−17J
To convert 𝐸 into 𝑒𝑣
K=2.4×10−171.6×10−19eV
K=150 eV
Step 4: Find the photon’s energy (K′)
.K′=hcλe
By putting all the given values,
K′=6.626×10−34×3×10810−10×1.6×10−19
K′=12.4 keV
Hence, K' > K for the same wavelength.
Final Answer : K=150 eV
K′=12.4 keV