Cube of difference of two numbers remains same if we interchange the numbers.
False
Let the two numbers be a and b.
So, (a−b)3=a3−b3−3a2b+3ab2 ... (i)
After interchanging the numbers, (b−a)3=b3−a3−3ab2+3a2b ... (ii)
Take (−) sign common in equation (ii), we get
(b−a)3=−(−b3+a3+3ab2−3a2b)=−(a3−b3−3a2b+3ab2)=−(a−b)3
⇒(a−b)3=−(b−a)3
Thus, the given statement is false