D and E are points on the sides AB and AC respectively of a △ABC such that DE || BC
and divides △ABC into two parts, equal in area. Find BDAB
We have, Area (△ADE) = Area (trapezium BCED) ⇒ Area (△ADE) + Area (△ADE)
= Area (trapezium BCED) + Area (△ADE)
⇒ 2 Area (△ADE) = Area (△ABC)
In △ADE and △ABC, we have
∠ADE = ∠B
[i.e, DE II BC ∴ ∠ADE = ∠B (Corresponding angles)]
and, ∠A = ∠A [Common]
∴ ∠ADE ~ ∠ABC
⇒ Area of(△ADE)Area of(△ABC)=AD2AB2
⇒ Area of(△ADE)2Areaof(△ADE)=AD2AB2
⇒ 12=(ADAB)2 ⇒ ADAB=1√2
⇒ AB = √2 AD
⇒ AB = √2 (AB - BD)
⇒ ( √2 - 1 ) AB = √2 BD
⇒ BDAB=√2−1√2=2−√22