ddx1-sin2x1+sin2xis equal to
sec2x
-sec2π4–x
sec2π4+x
sec2π4–x
Explanation for the correct option:
Step 1. Find the differentiation of the given expression:
Given, y=1-sin2x1+sin2x
⇒ y=cos2x+sin2x-2sinxcosxcos2x+sin2x+2sinxcosx ∵sin2θ+cos2θ=1,sin2θ=2sinθcosθ
⇒ y=(cosx–sinx)2(cosx+sinx)2
⇒ y=(cosx–sinx)(cosx+sinx)
Step 2. Divide numerator and denominator by cosx
y=(1-tanx)(1+tanx)
⇒y=(tanπ4-tanx)(tanπ4+tanx) ∵tan(π4)=1
⇒y=tanπ4-x ∵tan(θ-ϕ)=tanθ-tanϕtanθ+tanϕ
Differentiate it with respect to x, we get
∴dydx=-sec2(π4–x)
Hence, option (B) is correct.