ddxsecx+tanxsecx–tanx=?
2cosx(1-sinx)2
cosx(1-sinx)2
2cosx(1-sinx)
None of these
Find the differentiation of the given function:
Given, y=secx+tanxsecx–tanx
=1+sinx1-sinx
Differentiate it with respect to x, we get
∴dydx=(1-sinx)(cosx)+(1+sinx)(cosx)(1-sinx)2=cosx–(sinxcosx)+cosx+(sinxcosx)(1-sinx)2=2cosx(1-sinx)2 ; ∵ddx(uv)=vdudx+udvdxv2
Hence, option (A) is correct.
limx→0sec5x−sec3xsec3x−secx