ddxx3tan2x2=
x3tanx2sec2x2+3xtan2x2
x3tan2x2sec2x2+3x2tan2x2
x3tanx2sec2x2+3x2tan2x2
none of these
Explanation for correct option:
Given, ddxx3tan2x2
Apply theorem for differentiation of product of two or more function. ddxu·v=vdudx+udvdx
=3x2tan2x2+x32tanx2×sec2x2×12×1=3x2tan2x2+x3tanx2sec2x2=x3tanx2sec2x2+3x2tan2x2
Hence, correct answer is option C