FD is diagonal of the parallelogram BDEF
∴Area(△FBD)=area(△DEF)
SimilarlyArea(△DEF)=Area(△DCE)
ThereforeArea(△FBD)=Area(△DEF)=Area(△FAE)=Area(△DCE)
∴△ABCisdividedinto4non−overlappingtriangles△FBD,△DEF,△FAEand△DCE
ThereforeArea(△ABC)=Area(△FBD)+Area(△DEF)+Area(△FAE)+Area(△DCE)=4Area(△DEF)
Area(△DEF)=14area(△ABC)
So, as per given question
Areaof(BDEF)=Area(△FBD)+Area(△DEF)
=Area(△DEF)+Area(△DEF)
=2Area(△DEF)
=2×14area(△ABC)
=12area(△ABC)