Data: D is a point on the side BC of a triangle △ABC such that ∠ADC=∠BAC.
To Prove: CA2=CB×CD
Let ∠ADC=∠BAC=100∘
In △ABC, if ∠B=50∘, then ∠C=30∘
In △ADC, if ∠C=30∘, then ∠DAC=50∘
In △BCP,∠A=100∘,∠B=50∘,∠C=30∘
In △ADC,∠ADC=100,∠DAC=50∘,∠ACD=30∘
Similarity criterion of △ is A.A.A.
∴ In △ABC and △ADC,
CABC=DCCA
∴CA×CA=BC×DC
∴CA2=BC×DC.