1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Summation of Determinant
Dr = 2r-1 ...
Question
D
r
=
∣
∣ ∣ ∣
∣
2
r
−
1
2
(
3
r
−
1
)
4
(
5
r
−
1
)
x
y
z
2
n
−
1
3
n
−
1
5
n
−
1
∣
∣ ∣ ∣
∣
⇒
∑
n
r
=
1
D
r
=
A
2
n
.3
n
.
5
n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(
2
n
−
1
)
(
3
n
−
1
)
(
5
n
−
1
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x
×
y
×
z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is
D
0
Given,
D
r
=
∣
∣ ∣ ∣
∣
2
r
−
1
2
(
3
r
−
1
)
4
(
5
r
−
1
)
x
y
z
2
n
−
1
3
n
−
1
5
n
−
1
∣
∣ ∣ ∣
∣
⇒
∑
n
r
=
1
D
r
=
∣
∣ ∣ ∣
∣
2
0
2
(
3
0
)
4
(
5
0
)
x
y
z
2
n
−
1
3
n
−
1
5
n
−
1
∣
∣ ∣ ∣
∣
+
∣
∣ ∣ ∣
∣
2
1
2
(
3
1
)
4
(
5
1
)
x
y
z
2
n
−
1
3
n
−
1
5
n
−
1
∣
∣ ∣ ∣
∣
+
∣
∣ ∣ ∣
∣
2
2
2
(
3
2
)
4
(
5
2
)
x
y
z
2
n
−
1
3
n
−
1
5
n
−
1
∣
∣ ∣ ∣
∣
+
.
.
.
.
.
.
.
.
........
+
∣
∣ ∣ ∣
∣
2
n
−
1
2
(
3
n
−
1
)
4
(
5
n
−
1
)
x
y
z
2
n
−
1
3
n
−
1
5
n
−
1
∣
∣ ∣ ∣
∣
=
∣
∣ ∣ ∣
∣
2
0
+
2
1
+
2
2
+
.
.
.
.
+
2
n
−
1
2
(
3
0
+
3
1
+
3
2
+
.
.
.
.
+
3
n
−
1
)
4
(
5
0
+
5
1
+
5
2
+
.
.
.
.
+
5
n
−
1
)
x
y
z
2
n
−
1
3
n
−
1
5
n
−
1
∣
∣ ∣ ∣
∣
=
∣
∣ ∣ ∣
∣
2
n
−
1
(
3
n
−
1
)
(
5
n
−
1
)
x
y
z
2
n
−
1
3
n
−
1
5
n
−
1
∣
∣ ∣ ∣
∣
=
0
Suggest Corrections
0
Similar questions
Q.
If
D
r
=
∣
∣ ∣ ∣
∣
2
r
−
1
2
(
3
r
−
1
)
4
(
5
r
−
1
)
x
y
z
2
n
−
1
3
n
−
1
5
n
−
1
∣
∣ ∣ ∣
∣
then prove that
n
∑
r
=
1
D
r
=
0
Q.
If
D
r
=
∣
∣ ∣ ∣
∣
2
r
−
1
2
(
3
r
−
1
)
4
(
5
r
−
1
)
x
y
3
z
2
n
−
1
3
n
−
1
5
n
−
1
∣
∣ ∣ ∣
∣
then prove that
n
∑
r
=
1
D
r
=
0.
Q.
Let
D
r
=
∣
∣ ∣ ∣
∣
2
r
−
1
2.3
r
−
1
4.5
r
−
1
α
β
γ
2
n
−
1
3
n
−
1
5
n
−
1
∣
∣ ∣ ∣
∣
. Then, the value of
∑
n
r
=
1
D
r
is
Q.
If
D
r
=
⎛
⎜
⎝
2
r
−
1
2
.
3
r
−
1
4
.
5
r
−
1
α
β
γ
2
n
−
1
3
n
−
1
5
n
−
1
∣
∣ ∣ ∣
∣
,
then
the
value
of
∑
n
r
=
1
D
r
is