wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

ΔABC and ΔDBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see the given figure). If AD is extended to intersect BC at P, show that

(i) ΔABD ≅ ΔACD

(ii) ΔABP ≅ ΔACP

(iii) AP bisects ∠A as well as ∠D.

(iv) AP is the perpendicular bisector of BC.

Open in App
Solution

(i) In ΔABD and ΔACD,

AB = AC (Given)

BD = CD (Given)

AD = AD (Common)

∴ ΔABD ≅ ΔACD (By SSS congruence rule)

⇒ ∠BAD = ∠CAD (By CPCT)

⇒ ∠BAP = ∠CAP …. (1)

(ii) In ΔABP and ΔACP,

AB = AC (Given)

∠BAP = ∠CAP [From equation (1)]

AP = AP (Common)

∴ ΔABP ≅ ΔACP (By SAS congruence rule)

⇒ BP = CP (By CPCT) … (2)

(iii) From equation (1),

∠BAP = ∠CAP

Hence, AP bisects ∠A.

In ΔBDP and ΔCDP,

BD = CD (Given)

DP = DP (Common)

BP = CP [From equation (2)]

∴ ΔBDP ≅ ΔCDP (By S.S.S. Congruence rule)

⇒ ∠BDP = ∠CDP (By CPCT) … (3)

Hence, AP bisects ∠D.

(iv) ΔBDP ≅ ΔCDP

∴ ∠BPD = ∠CPD (By CPCT) …. (4)

∠BPD + ∠CPD = 180 (Linear pair angles)

∠BPD + ∠BPD = 180

2∠BPD = 180 [From equation (4)]

∠BPD = 90 … (5)

From equations (2) and (5), it can be said that AP is the perpendicular bisector of BC.


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Criteria for Congruency
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon