(De Morgan's laws) For any two sets A and B, prove that:
I. (A∪B)′=(A′∩B′)
II. (A∩B)′=(A′∪B′)
(i) Let x be an arbitary element of (A∪B)' Then,
xϵ(A∪B)′
⇒x∉A∪B
⇒ x∉A and x∉B [note this point]
⇒ xϵA′ and xϵB′
⇒ xϵ(A′∩B′)
∴ (A∪B)′⊆(A′∩B′). …(i)
Again, let y be an arbitary element of (A′∩B′). Then,
yϵ(A′∩B′)
⇒yϵA′ and yϵB′
⇒ y∉A and y∉B
⇒ y∉(A∪B) [note this point]
⇒ yϵ(A∪B)′
∴ (A′∩B′)⊆(A∪B)′. …(ii)
From (i) and (ii) we get A∪B)′=(A′∩B′)
(ii) Let x be an arbitary element of (A∩B)′ Then,
xϵ(A∩B)′
⇒x∉(A∩B)
⇒ x∉A or x∉B [note this point]
⇒ xϵA′ or xϵB′
⇒ xϵ(A′∪B′)
∴ (A∩B)′⊆(A′∪B′). …(iii)
Again, let y be an arbitary element of (A′∪B′). Then,
yϵ(A′∪B)′yϵ(A′∪B′)⇒yϵA′ or yϵB′
⇒ y∉A or x∉B
⇒ y∉(A∩B) [note this point]
⇒ yϵ(A∩B)′
∴ (A′∪B′)⊆(A∩B)′. …(iv)
From (iii) and (iv), we get (A∩B)′=(A′∪B′)