wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Define a continuity of a function at a point. Find all the point of discontinuity of f defined by f(x)=|x||x+1|.

Open in App
Solution

Step1:
f(x)=|x||x+1|
When x<1
f(x)=x[(x+1)]=x+x+1=1
When 1x<0
f(x)=x(x+1)=xx1=2x1
When x0
f(x)=x(x+1)=xx1=1
Step2:
At x=1
LHL=limx1f(x)=limx1(1)=1
RHL=limx(1)+f(x)=limx(1)+(2x1)=2(1)1=21=2
f(1)=2(1)1=21=1\\ LHL=RHL=f(1)
f is continuous at x=1
Step3:
At x=0
LHL=limx(0)f(x)=limx(0)(2x1)=2(0)1=01=1
RHL=limx(0)+f(x)=limx(0)+(1)=1
LHL=RHL=f(0)
f is continuous at x=0
Hence f is continuous for all xR

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiplication of Algebraic Expressions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon