wiz-icon
MyQuestionIcon
MyQuestionIcon
13
You visited us 13 times! Enjoying our articles? Unlock Full Access!
Question

Define a continuity of a function at a point. Find all the points of discontinuity of f(x) defined by f(x)=xx+1.

Open in App
Solution

Consider the given function:

f(x)=[x][x+1].

whenx>0

f(x)=x(x1)where[x]={x,x0x,x=0}

xx+1=xx1

xx+1=xx1

x=1

whenx<1where[x+1]={(x+1),x+0(x+1),x+1<0}

f(x)=x[(x+1)]{(x+1),x1(x+1),x<1}

=x+x+1

=1

when1x<0

f(x)=x(x+1)

=xx+1

=2x+1

Nowf(x)={1ifx12x1if1x0}

Checkingcontinuityatx=0

Afunctioniscontinuousatx=0

ifL.H.L=R.H.L=f(0)

limx0f(x)=limx0+f(x)=f(0)

L.H.L=limx0f(x)

limxo(2x1)

putx=0

=2×01=1

R.H.L=limx0+f(x)

limx0+(1)=1

&f(x)=1

sof(0)=1

ThusL.H.L=R.H.L=f(0)

Hencef(x)iscontinuousatx=0


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon