Consider the given function:
f(x)=[x]−[x+1].
whenx>0
f(x)=x−(x−1)where[x]={x,x≥0−x,x=0}
−x−x+1=x−x−1
x−x+1=x−x−1
x=−1
whenx<−1where[x+1]={(x+1),x+≥0−(x+1),x+1<0}
f(x)=−x−[−(x+1)]{(x+1),x≥−1−(x+1),x<1}
=−x+x+1
=1
when−1≤x<0
f(x)=−x−(x+1)
=−x−x+1
=−2x+1
Nowf(x)={1ifx≤−1−2x−1if−1≤x≤0}
Checkingcontinuityatx=0
Afunctioniscontinuousatx=0
ifL.H.L=R.H.L=f(0)
limx→0−f(x)=limx→0+f(x)=f(0)
L.H.L=limx→0−f(x)
limx→o−(−2x−1)
putx=0
=−2×0−1=−1
R.H.L=limx→0+f(x)
limx→0+(−1)=−1
&f(x)=−1
sof(0)=−1
ThusL.H.L=R.H.L=f(0)
Hencef(x)iscontinuousatx=0