The correct option is D g(x) is continuous everywhere and differentiable everywhere except at x=0,1,2
g(x)=3∫−3f(x−y)f(y) dy⇒g(x)=1∫0f(x−y) dy
Assuming x−y=t⇒dy=−dt
So, g(x)=x∫x−1f(t) dt
Case I : x<0
f(t)=0⇒g(x)=0
Case II : 0≤x<1
g(x)=0∫x−1f(t) dt+x∫0f(t) dt⇒g(x)=x∫01 dt=x
Case III : 1≤x≤2
g(x)=1∫x−1f(t) dt+x∫0f(t) dt⇒g(x)=1∫x−11 dt=2−x
Case IV : x>2
f(t)=0⇒g(x)=0
∴g(x)=⎧⎪
⎪⎨⎪
⎪⎩0 x<0x 0≤x<12−x 1≤x≤20 x>2
Clearly, g(x) is continuous ∀ x∈R and g(x) is differentiable ∀ x∈R−{0,1,2}.