To Prove- AC2=AB2+BC2
For this we drop a perpendicular BD onto the side AC
We know, △ADB∼△ABC
Therefore, ADAB=ABAC (Condition for similarity)
Or, AB2=AD×AC……..(1)
Also, △BDC∼△ABC
Therefore, CDBC=BCAC (Condition for similarity)
Or, BC2=CD×AC……..(2)
Adding the equations (1) and (2) we get,
AB2+BC2=AD×AC+CD×AC
AB2+BC2=AC(AD+CD)
Since, AD + CD = AC
Therefore, AC2=AB2+BC2