ΔABC is a right triangle right angled at B. AD and CE are the two medians drawn from A and C respectivley. If AC =5cm and AD =3√52 cm, then CE =??
2√5cm
Let AE =BE =a cm
and BD=DC =b cm.
Using mid point theorem DE=12AC.
=52cm.
In ΔDBC,DB2+BE2=ED2
⇒a2+b2=254−−−(I)
In ΔABD,AB2+BD2=AD2
(2a)2+b2=(3√32)2
⇒4a2+b2=454−−−(II)
Solving (I) and (II), we get, a2=53 and b2=5512.
Now, in ΔBEC.
BE2+BC2=EC2 or,EC2=a2+(2b)2=a2+4b2
=53+553=603=20
∴EC=√20cm=2√5cm