ΔABC is right angled at B and 5×sin A=3. Find cos C + tan A + cosec C.
135
Consider ΔABC is right angled at B.
5×sinA=3 (given)
⇒sinA=35=BCAC
So, if BC = 3k, then AC = 5k where k is a positive number.
Applying Pythagoras' theorem,
AB2+BC2=AC2AB2=(5k)2−(3k)2=16k2AB=4k
cos C=BCAC=35
tan A=BCAB=34
cosec C=ACAB=54
⇒cos C+tan A+cosec C
=35+34+54
=12+15+2520=135