ΔABC is right angled at B, given 5×sinA=3.
Find cos C + tan A + cosec C.
135
Δ ABC is right angled at B,
Given,5×sinA=3sinA=35=BCAC
Which means BC=3k,AC=5k since, BC:AC=3:5
Applying Pythagoras theorem, AB2+BC2=AC2AB2=(5k)2−(3k)2=16k2AB=4kcosC=BCAC=35tanA=BCAB=34cosecC=ACAB=54cosC+tanA+cosecC=35+34+54=12+15+2520=135