ΔABC∼ΔPQR and ar ΔABC = 4 arΔPQR. If BC = 12 cm, find QR.
The ratio of the areas of the similar triangle are in the ratio of the square of the corresponding sides
ar(ΔABC)ar(ΔPQR)=BC2QR2
4ΔPQRPQR=(12)2QR2
(arΔABC=4 arΔPQR and BC = 12 cm given)
4=144QR2
QR2=1444
QR2=36
QR=√36cm
QR= 6 cm