wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Δ=∣ ∣13 cos θ1sin θ13 cos θ1sin θ1∣ ∣=R1R1R3Δ=∣ ∣03 cos θsin θ0sin θ13 cos θ1sin θ1∣ ∣

Open in App
Solution

=(sin θ3 cos θ)(sin θ3 cos θ)
Δ=(sin θ3 cos θ)2
dΔdθ=2(sin θ3 cos θ)(cos θ3 sin θ)=0
Eithersin θ3 cos θ=0tan θ=3
or cos θ+3 sin θ=0tan θ=13
Now, sin θ=±tan θ1+tan2 θ
sin2 θ=tan2 θ1+tan2 θ=a10 and 1a1+19=110
at tan θ=3 at tan θ=13
cos2 θ=11+tan2 θ110and11+19=910
at tan θ=3 at tan θ=13
Δ=(sin θ3 cos θ)2=sin2 θ+9 cos2 θ6 sin θ cos θ
=910+9106×310×110
=910+9101810=0
=110+810+6×110×310=1+8+1810=10010=10
MaxvalueofΔ=10

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Euler's Representation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon