=(sin θ−3 cos θ)(sin θ−3 cos θ)
Δ=(sin θ−3 cos θ)2
dΔdθ=2(sin θ−3 cos θ)(cos θ−3 sin θ)=0
∴Eithersin θ−3 cos θ=0⇒tan θ=3
or cos θ+3 sin θ=0⇒tan θ=−13
Now, sin θ=±tan θ√1+tan2 θ
sin2 θ=tan2 θ1+tan2 θ=a10 and 1a1+19=110
at tan θ=3 at tan θ=−13
cos2 θ=11+tan2 θ⇒110and11+19=910
at tan θ=3 at tan θ=−13
Δ=(sin θ−3 cos θ)2=sin2 θ+9 cos2 θ−6 sin θ cos θ
=910+910−6×310×110
=910+910−1810=0
=110+810+6×1√10×3√10=1+8+1810=10010=10
∴MaxvalueofΔ=10