Δ denotes the area of triangle with vertices (p+1,1), (2p+1,3) and (2p+2,2p). Match the correct values of p in List I with corresponding values of areas in List II.
Open in App
Solution
Area of the given triangle is Δ=12∣∣
∣∣p+1112p+1312p+22p1∣∣
∣∣=12∣∣
∣∣p+111p20p+12p−10∣∣
∣∣=12(2p2−3p−2) Applying R2→R2−R1 and R3→R3−R1 A) If p=0 Δ=∣∣∣12(−2)∣∣∣=1
B)p=±1 Δ=∣∣∣12(±3)∣∣∣=32 C) If p=3 Δ=12(2×9−3×3−2)=72