The correct option is B −99.97kJmol−1
At anode : H2(g)→2H⊕(aq)+2e−(oxidation)
At cathode : 2AgBr(s)+2e−→2Ag(s)+2Br⊖(aq)(Reduction)
ΔG⊖at15∘C=−nFE⊖cell
=−2×96500Cmol−1×0.23V
=−44390Jmol−1
ΔG⊖at35∘C=−nFE⊖cell
=−2×96500Cmol−1×0.21V
=−40530Jmol−1
Now, ΔG⊖at15∘C=ΔH⊖−TΔS⊖
−44390Jmol−1=ΔH⊖−(288K)ΔS⊖ ....(i)
and ΔG⊖at35∘C=ΔH⊖−(308K)ΔS⊖
−40530Jmol−1=ΔH⊖−(308K)ΔS⊖ .... (ii)
(Assuming ΔH and ΔS at 298 K are temperature independent, i.e., ΔH at 15∘C=ΔH⊖ and ΔH at 35∘C=ΔH⊖).
Solving for ΔH⊖ and ΔS⊖ from equation (i) and (ii) we get,
−44390+288ΔS⊖=ΔH⊖ .... (iii)
−40530+308ΔS⊖=ΔH⊖ .... (iv)
Equating equations (iii) and (iv), we get
ΔS⊖=−193JK−1mol−1
Substituting the value of ΔS⊖ in either equation (iii) or (iv),
−44390JK−1+288+288×(−193JK−1)=ΔH⊖
∴ΔH⊖=−99974JK−1=−99.974kJmol−1