given
∣∣
∣∣1−sinθ1−sinθ1−sinθ−1−sinθ1∣∣
∣∣≠Δ
Expanding the determinant by 1st row
=1∣∣∣1sinθ−sinθ1∣∣∣−sinθ∣∣∣−sinθsinθ11∣∣∣+1∣∣∣−sinθ1−1−sinθ∣∣∣
=1+sin2θ−sinθ(−sinθ+sinθ)+sin2θ+1
=2+2sin2θ+sin2θ−sin2θ
=2+2sin2θ=Δ
We know range of sin2θ is given as
0≤sin2θ≤1(multiplying 2)
0≤sin2θ≤2 (adding 2)
2≤2+2sin2θ≤4
2≤Δ≤4 proved