The correct option is C 0
Δ(x)=∣∣
∣
∣∣exsin2xtanx2ln(1+x)cosxsinxcosx2ex−1sinx2∣∣
∣
∣∣=A+Bx+Cx2+
Put x=0
⇒∣∣
∣∣100010100∣∣
∣∣=A
⇒A=1
So, Δ(x)=∣∣
∣
∣∣exsin2xtanx2ln(1+x)cosxsinxcosx2ex−1sinx2∣∣
∣
∣∣=1+Bx+Cx2+
Δ′(x)=∣∣
∣
∣∣ex2cos2x2xsecx2ln(1+x)cosxsinxcosx2ex−1sinx2∣∣
∣
∣∣+∣∣
∣
∣∣exsin2xtanx21/(1+x)−sinxcosxcosx2ex−1sinx2∣∣
∣
∣∣+∣∣
∣
∣∣exsin2xtanx2ln(1+x)cosxsinx−2xsinx2ex2xcosx2∣∣
∣
∣∣=B+2Cx+...
Put x=0
⇒∣∣
∣∣120010100∣∣
∣∣+∣∣
∣∣100101100∣∣
∣∣+∣∣
∣∣100010010∣∣
∣∣=B
⇒B=0