The moment of inertia of the sphere of massMand radiusRis given as
Let us consider a sphere of radiusrat a distancex
dV=πr2dx
dV=π(R2−x2)dx
dm=πρ(R2−x2)dx
The moment of inertia
I=∫r2dm
By substituting the values we get
I=πρR∫0(R2−x2)2dx
I=8πρ15R5
By substituting the the density given we get the moment of inertia of the sphere as,
I=8πR515(P.(1+rR)P0)