The correct option is C ex(cosx2+2xsinx2)cos2(x2)
Given, f(x)=excos(x2)
So, derivative of the given function is
df(x)dx=d(excosx2)dx
Using division and chain rule together we get
cosx2dexdx−exd(cosx2)dx2×dx2dx(cosx2)2
⇒ ex.cosx2+2xexsinx2cos2(x2)
⇒ ex(cosx2+2xsinx2)cos2(x2)