The correct option is A ex.cos(√x)2√x+exsin(√x)
Given, f(x)=exsin(√x)
So, derivative of the given function is
df(x)dx=d(exsin(√x))dx
Using product and chain rule together we get
exdsin(√x)dx+sin(√x)dexdx
⇒ ex[dsin(√x)d√x×d√xdx]+exsin(√x)
⇒ ex(cos(√x)2√x)+exsin(√x)
⇒ ex.cos(√x)2√x+exsin(√x)