The correct option is C √x.cos(√x)2+sin(√x)
Given, f(x)=xsin(√x)
So, derivative of the given function is
df(x)dx=d(xsin(√x))dx
Using product and chain rule together we get
xdsin(√x)dx+sin(√x)dxdx
⇒ x[dsin(√x)d√x×d√xdx]+sin(√x)
⇒ x(cos(√x)2√x)+sin(√x)
⇒ √x.cos(√x)2+sin(√x)