The correct option is C (xcosx)x[(logx+1)+{logcosx+xcosx.(−sinx)}]
Let y=(xcosx)x.
Taking logarithm on both sides, we get
logy=log(xcosx)x
=xlog(xcosx)
=xlogx+xlogcosx
Differentiating both sides with respect to x, we get
1ydydx=ddx(xlogx)+ddx(xlogcosx)
dydx=y[(1+logx)+(logcosx+xcosxddx(cosx))]
∴dydx=(xcosx)x[(logx+1)+{logcosx+xcosx.(−sinx)}]