Let M be mass of the earth, R be the radius of the earthgd be gravitational acceleration at depth ′d′ from the earth surface
g be gravitational acceleration on the earth surfaces.
p be the density of the earth.
′p′ be the point inside the earth at depth ′d′ from earth surfaces.
∴CS−CP=d, ∴CP=R−d-----------(1) (since CS=R)
g=GMR2
∴g=G43πR3pR2
∴g=4GπRp3--------------(2)
gd= acceleration due to gravity at depth ′d′
gd=G×MassofthespherewithradiusCPCp2
∴gd=G43πCP3ρCP2
∴gd=4GπCPρ3-----------(3)
Dividing eq. (3) by eq(2)
gdg=CPR=R−dR
∴gd=g(1−dR)