R.H.S.
2cos(x+y)2cos(x−y)2
=2cos(x2+y2)cos(x2−y2)
=2[cosx2cosy2−sinx2siny2][cosx2cosy2+sinx2siny2]
=2[(cosx2cosy2)2−(sinx2siny2)2]
=2[cos2x2cos2y2−sin2x2sin2y2]
=2[cos2x2(1−sin2y2)−(1−cos2x2)sin2y2]
=2[cos2x2−cos2x2sin2y2−sin2y2+sin2y2cos2x2]
=2[cos2x2−sin2y2]
=2[1+cosx2−1−cosy2]
=22[1+cosx−1+cosy]
=cosx−cosy
L.H.S.
Hence proved.