Let y1 and y2 be the displacement of two waves having same amplitude a and phase difference ϕ between them. Then,
y1=a sinωt
y2=a sin(ωt+ϕ)
The resultant displacement, y=y1+y2
y=a sinωt+a sin(ωt+ϕ)=a sinωt+a sinωt cosϕ+a cosωt sinϕ=a sinωt (1+cosϕ)+cosωt (a sinϕ)
Define Rcosθ=a(1+cosϕ) and Rsinθ=a sinϕ
y=Rsinωt cosθ+Rcosωt sinθ
y=Rsin(ωt+θ)
Here R is resultant amplitude at some point P. By using the above equations (Rcosθ=a(1+cosϕ) and Rsinθ=a sinϕ), we can easily find out R2
R2=4a2cos2ϕ2
Now, for maximum intensity
cos2ϕ2=1
ϕ=2nπ where n =0,1,2....
ϕ=0,2π,4π,6π....
Therefore, Imax=4a2
For minimum intensity
cos2ϕ2=0
ϕ=(2n+1)π where n=0,1,2,3....
ϕ=π,3π,5π....
Therefore, Imin=0