Consider the given complex number 1+2i+3i21−2i+3i2 ,
∵i2=−1
1+2i+3i21−2i+3i2=1+2i+3(−1)1−2i+3(−1)
=2i−2−2i−2=2−2i2+2i
=1−i1+i
By rationalization ,we get
1−i1+i=1−i1+i×1+i1+i
=12−i2(1+i)2=12−i212+i2+2i
∵12−i212+i2+2i=12−(−1)12+(−1)+2i
=22i=1i
Rationalise again ,we get
1i=1i×ii=ii2
i(−1)=−i
=0−i
1+2i+3i21−2i+3i2=0−i
A+iB=0−i
Hence, this is the required answer.