The correct option is A 18R3(a−b)(b−c)(c−a)
We know that
asinA=bsinB=csinC=2R
So, =∣∣
∣
∣
∣
∣∣111a2Rb2Rc2R(a2R)2(b2R)2(c2R)2∣∣
∣
∣
∣
∣∣
=18R3∣∣
∣
∣∣111abca2b2c2∣∣
∣
∣∣
C1→C1−C2,C2→C2−C3
=18R3∣∣
∣
∣∣001a−bb−cca2−b2b2−c2c2∣∣
∣
∣∣
=18R3(a−b)(b−c)∣∣
∣∣00111ca+bb+cc2∣∣
∣∣
=18R3(a−b)(b−c)(c−a)