Determine a positive integer n≤5, such that ∫10ex(x−1)ndx=16−6e
A
n=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
n=2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
n=3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
n=−3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bn=3 ln=∫10ex⋅(x−1)ndx =ex⋅(x−1)n∫10−n∫10ex(x−1)n−1dx ln=−(−1)n−nln−1=(−1)n+1−nln−1 n=1,l=∫10ex(x−1)dx =(x−1)ex∫10−∫10exdx=2−e l2=−1−2(2−e)=2e−5 l3=1−3.(2e−5)=16−6e So, n=3