The correct option is
A P(x)=a0+a1(3x−4x3)+a2(3x−4x3)2+....+(3x−4x3)k.k(x)Here, P(x)=P(−x+√3−3x22) for |x|≤1 (i)
Let x=0,
⟹P(0)=P(√32)
Which shows, P(x)−P(0) is divisible by x(x−√32).
Since, P(x)−P(0) has rational coefficients and √32 is one of the roots,
∴−√32 is also a root of P(x)−P(0).
Thus,
$\displaystyle
x\left(x-\dfrac{\sqrt{3}}{2}\right)\left(x+\dfrac{\sqrt{3}}{2}\right)=x^3-\dfrac{3}{4}x=\dfrac{4x^3-3x}{4}$
is factor of P(x)−P(0).
∴P(x)=P(0)+(3x−4x3)P1(x) for |x|≤1 (ii)
as P(x)=P(−x+√3−3x22)
⟹3(−x+√3−3x22)−4(−x+√3−3x22)=3x−4x3
∴P1(x)=P1(−x+√3−3x22)
∴P1(x)=P1(0)+(3x−4x3)P2(x) [using equation (ii)]
⟹P(x)=P(0)+(3x−4x3)(P1(0))+(3x−4x3)P2(x)
=P(0)+(3x−4x3)P1(0)+(3x−4x3)2P2(x)
Thus, in general,
P(x)=a0+a1(3x−4x3)+a2(3x−4x3)2+⋯+(3x−4x3)k.k(x)
where k(x) is a polynomial with rational coefficient.