1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Mid Point
Determine all...
Question
Determine all the values of
x
for which the points
(
α
,
α
2
)
lies inside the
△
formed by the lines
x
−
3
y
+
2
=
0
x
−
2
y
−
3
=
0
x
−
5
y
+
6
=
0
Open in App
Solution
It is given that point
P
(
α
2
,
α
)
lies either inside or on the triangle
So, A and P must lie on same side of BC.
⇒
(
9
−
9
+
2
)
(
α
2
−
3
α
+
2
)
≥
0
⇒
(
α
−
2
)
(
α
−
1
)
≥
0
⇒
α
∈
(
−
∞
,
1
]
∪
[
2
,
∞
)
__(i)
if B and P lie on the same side of AC then
(
4
−
4
−
3
)
(
α
2
−
2
α
−
3
)
≥
0
⇒
(
α
−
3
)
(
α
+
1
)
≥
0
⇒
α
∈
[
−
1
,
3
]
__(ii)
if C and P lie on the same side of AB , then
(
13
−
25
+
6
)
(
α
2
−
52
+
6
)
≥
0
⇒
(
α
−
3
)
(
α
−
2
)
≤
0
⇒
α
∈
[
2
,
3
]
__(iii)
From (i), (ii), (iii)
α
∈
[
2
,
3
]
Suggest Corrections
0
Similar questions
Q.
Determine all values of
α
for which the point
(
α
,
α
2
)
lies inside the triangle formed by the lines
2
x
+
3
y
−
1
=
0
,
x
+
2
y
−
3
=
0
and
5
x
−
6
y
−
1
=
0
.
Q.
Find the values of α so that the point P (α
2
, α) lies inside or on the triangle formed by the lines x − 5y + 6 = 0, x − 3y + 2 = 0 and x − 2y − 3 = 0.