2cos(x)≤|√1+sin2x−√1−sin2x|≤2
2cos(x)≤|√sin2(x)+cos2(x)+2sin(x).cos(x)−√sin2(x)+cos2(x)−2sin(x).cos(x)|≤2
2cos(x)≤|sin(x)+cos(x)−(cos(x)−sin(x))|≤2
2cos(x)≤|2sin(x)|≤2
cos(x)≤|sin(x)|≤1
Now |sin(x)|≤1 is true for all xϵ[0,2π].
Hence
|sin(x)|≥cos(x).
Or
sin(x)≥cos(x) and sin(x)≤−cos(x)
Now
sin(x)−cos(x)≥0
sin(x−π4)≥0
0≤x−π4≤π
π4≤x≤5π4 ...(i)
And
sin(x)≤−cos(x)
sin(x)+cos(x)≤0
sin(x+π4)≤0
xϵ[0,π4]∪[5π4,2π]...(ii)