The correct option is C −54,3√5,−3√5
Let, p(x)=4x3+5x2−180x−225
Since, −54 is zero of p(x)
⇒(4x+5)divides p(x) (∵Factor thm.)
4x+5)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯4x3+5x2−180x−225( x2−45
4−x3+−5x2––––––––––
−180x−225
−+180x−+225––––––––––––––
0
Now, the other roots can be obtained from x2−45=0
⇒x2=45
⇒x=±√45=±3√5
Hence, the zeros are −54,−3√5,3√5