log{(logx)2−5logx+6}.
From the given inequality, it follows that
(logx)2−5logx+6>0
Put logx=t
⇒t2−5t+6>0
⇒(t−2)(t−3)>0
⇒t<2 or t>3
⇒logx<2 or logx>3
⇒x<102 or x>103
Since, logx is defined for x>0
⇒x∈(0,102)∪(103,∞)
Comparing with given domain ,
a=102,b=103
⇒a+b=102+103