Determine if f(x) defined by f(x) ={x2sin1x, if x≠0o, if x=0 is a continuous function ?
Here, f(x) ={x2sin1x, if x≠0o, if x=0
LHL = limx→0−f(x)=limx→0−(x2)sin1x,Putting x=a-h as x→0− when h→0
∴limx→0(0−h)2 sin1(0−h)=limh→0(−h2 sin1h) ∴sin(−0)=−sin 0)
=−0xsin(∞)=0(∴−1≤sin x≤1,∀x ϵR)
RHL = limx→0+f(x)=limx→0+(x2)1x
Putting x=a-h as x→a+ when h→0
∴limx→0(0−h)2 sin1(0+h)=limh→0 h2 sin1h=0(∞) ∴−1≤sin x≤1,∀x ϵR)
∴ LHL=RHl = f(0). Thus, f(x) is continuous at x=0